

Investigation of the Risk to Software Reliability and Maintainability of Requirements
Changes

Proceedings of the International Conference on Software Maintenance, Florence, Italy,
7-9 November 2001, pp. 127-136.

Norman F. Schneidewind, Fellow, IEEE

Naval Postgraduate School
Monterey, CA 93943, USA

Voice: (831) 656-2719
Fax : (831) 372-0445
nschneid@nps.navy.mil

Abstract

In order to continue to make progress in software

measurement, as it pertains to reliability and
maintainability, we must shift the emphasis from design
and code metrics to metrics that characterize the risk of
making requirements changes. Although these software
attributes can be difficult to deal with due to the fuzzy
requirements from which they are derived, the advantage
of have early indicators of future software problems
outweighs this inconvenience. We developed an approach
for identifying requirements change risk factors as
predictors of reliability and maintainability problems.
Our case example consists of twenty-four Space Shuttle
change requests, nineteen risk factors, and the associated
failures and software metrics. The approach can be
generalized to other domains with numerical results that
would vary according to application.

Keywords: risk assessment, reliability, maintainability.

1. Introduction

While software design and code metrics have enjoyed

some success as predictors of software quality attributes
such as reliability [5, 6, 7, 8, 11, 13, 14], the measurement
field is stuck at this level of achievement. If measurement
is to advance to a higher level, we must shift our attention
to the front-end of the development process, because it is
during system conceptualization that errors in specifying
requirements are inserted into the process and adversely
affect our ability to maintain the software. A requirements
change may induce ambiguity and uncertainty in the
development process that cause errors in implementing
the changes. Subsequently, these errors propagate through
later phases of development and maintenance. These
errors may result in significant risks associated with

implementing the requirements. For example, reliability
risk (i.e., risk of faults and failures induced by changes in
requirements) may be incurred by deficiencies in the
process (e.g., lack of precision in requirements). Although
requirements may be specified correctly in terms of
meeting user expectations, there could be significant risks
associated with their implementation. For example,
correctly implementing user requirements could lead to
excessive system size and complexity with adverse effects
on reliability and maintainability or there could be a
demand for project resources that exceeds the available
funds, time, and personnel skills. Interestingly, there has
been considerable discussion of project risk (e.g., the
consequences of cost overrun and schedule slippage) in
the literature [1] but not a corresponding attention to
reliability and maintainability risk.

Risk in the Webster's New Universal Unabridged

Dictionary is defined as "the chance of injury; damage, or
loss" [21]. Some authors have extended the dictionary
definition as follows: "Risk Exposure=Probability of an
Unsatisfactory Outcome*Loss if the Outcome is
Unsatisfactory" [1]. Such a definition is frequently
applied to the risks in managing software projects such as
budget and schedule slippage. In contrast, our application
of the dictionary definition pertains to the risk of
executing the software of a system where there is the
chance of injury (e.g., crew injury or fatality), damage
(e.g., destruction of the vehicle), or loss (e.g., loss of the
mission) if a serious software failure occurs during a
mission. We use risk factors to indicate the degree of risk
associated with such an occurrence.

The generation of requirements is not a one-time

activity. Indeed, changes to requirements can occur during
maintenance. When new software is developed or existing
software is changed in response to new and changed
requirements, respectively, there is the potential to incur

reliability and maintainability risks. Therefore, in
assessing the effects of requirements on reliability and
maintainability, we should deal with changes in
requirements throughout the life cycle.

In addition to the relationship between requirements
and reliability and maintainability there are the
intermediate relationships between requirements and
software metrics (e.g., size, complexity) and between
metrics and reliability and maintainability. These
relationships may interact to put the reliability and
maintainability of the software at risk because the
requirements changes may result in increases in the size
and complexity of the software that may adversely affect
reliability and maintainability. We studied these
interactions for the Space Shuttle. For example, assume
that the number of iterations of a requirements change --
the "mod level" -- is inversely related to reliability. That
is, if many revisions of a requirement are necessary before
it is approved, this is indicative of a requirement that is
hard to understand and implement safely -- a risk that
directly impacts reliability. At the same time, this
complex requirement will affect the size and complexity
of the code that will, in turn, have deleterious effects on
reliability and maintainability.

2. Objectives

Given the lack of emphasis in measurement research

on the critical role of requirements, we were motivated to
investigate the following issues:

 - What is the relationship between requirements attributes
and reliability and maintainability? That is, are there
requirements attributes that are strongly related to the
occurrence of defects and failures in the software?

- What is the relationship between requirements attributes
and software attributes like complexity and size? That is,
are there requirements attributes that are strongly related
to the complexity and size of software?

- Is it feasible to use requirements attributes as predictors
of reliability and maintainability? That is, can static
requirements change attributes like the size of the change
be used to predict reliability in execution (e.g., failure
occurrence) and the maintainability of this code?

- Which requirements attributes pose the greatest risk to
reliability and maintainability?

2.1 Contribution

This research makes a contribution to the
quantification of the above relationships, but we also
point out three major problems in this type of research: 1)

small sample sizes, incomplete data, and inconsistencies
in the data, 2) subjective nature of some risk factors, and
3) measurement scales that for some risk factors are at
most ordinal.

3. Related Research

A number of useful related reliability and

maintenance measurement projects have been reported in
the literature. Much of the research and literature in
software metrics concerns the measurement of code
characteristics [10, 12]. This is satisfactory for evaluating
product quality and process effectiveness once the code is
written. However, if organizations use measurement plans
that are limited to measuring code, these plans will be
deficient in the following ways: incomplete, lack
coverage (e.g., no requirements analysis and design), and
start too late in the process. For a measurement plan to be
effective, it must start with requirements and continue
through to operation and maintenance. Since requirements
characteristics directly affect code characteristics and
hence reliability and maintainability, it is important to
assess their impact when requirements are specified.

Briand, et al, developed a process to characterize

software maintenance projects [2]. They present a
qualitative and inductive methodology for performing
objective project characterizations to identify maintenance
problems and needs. This methodology aids in
determining causal links between maintenance problems
and flaws in the maintenance organization and process.
Although the authors have related ineffective maintenance
practices to organizational and process problems, they
have not made a linkage to risk assessment.

Pearse and Oman applied a maintenance metrics

index to measure the maintainability of C source code
before and after maintenance activities [15]. This
technique allowed the project engineers to track the
"health" of the code as it was being maintained.
Maintainability is assessed but not in terms of risk
assessment.

Pigoski and Nelson collected and analyzed metrics on

size, trouble reports, change proposals, staffing, and
trouble report and change proposal completion times [17].
A major benefit of this project was the use of trends to
identify the relationship between the productivity of the
maintenance organization and staffing levels. Although
productivity was addressed, risk assessment was not
considered.

Sneed reengineered a client maintenance process to

conform to the ANSI/IEEE Standard 1219, Standard for
Software Maintenance [19]. This project is a good

example of how a standard can provide a basic framework
for a process and can be tailored to the characteristics of
the project environment. Although applying a standard is
an appropriate element of a good process, risk assessment
was not addressed.

Stark collected and analyzed metrics in the categories
of customer satisfaction, cost, and schedule with the
objective of focusing management's attention on
improvement areas and tracking improvements over time
[20]. This approach aided management in deciding
whether to include changes in the current release, with
possible schedule slippage, or include the changes in the
next release. However, the author did not relate these
metrics to risk assessment.

An indication of the back seat that software risk

assessment takes to hardware, Fragola reports on
probabilistic risk management for the Space Shuttle.
Interestingly, he says: “The shuttle risk is embodied in the
performance of its hardware, the careful preparation
activities that its ground support staff take between flights
to ensure this performance during a flight, and the
procedural and management constraints in place to control
their activities.” [4]. There is not a word in this statement
or in his article about software! Another hardware-only
risk assessment is by Maggio, who says: “The current
effort is the first integrated quantitative assessment of the
risk of the loss of the shuttle vehicle from 3 seconds prior
to liftoff to wheel-stop at mission end.” Again, not a word
about software [9].

Pfleeger lays out a roadmap for assessing project risk

that includes risk prioritization [16], a step that we
address with the degree of confidence in the statistical
analysis of risk (see Results section).

This paper is organized as follows: research

approach, risk factors, results, and conclusions.

4. Research Approach

By retrospectively analyzing the relationship between

requirements and reliability and maintainability, we were
able to identify those risk factors that are associated with
reliability and maintainability and we were able to
prioritize them based on the degree to which the
relationship was statistically significant. In order to

quantify the effect of a requirements change, we use
various risk factors that are defined as the attribute of a
requirement change that can induce adverse effects on
reliability (e.g., failure incidence), maintainability (e.g.,
size and complexity of the code), and project management
(e.g. personnel resources). Various examples of risk
factors are shown in the section Risk Factors.

Table 1 shows the Change Request Hierarchy of the
Space Shuttle, involving change requests (i.e., a request
for a new requirement or modification of an existing
requirement), discrepancy reports (i.e., reports that
document deviations between specified and observed
software behavior), and failures. We analyzed categories
1 versus 2.1 and 1 versus 2.2.3 with respect to risk factors
as discriminants of the categories.

Table 1: Change Request Hierarchy
Change Requests (CRs)
 1. No Discrepancy Reports (i.e., CRs with no DRs)
 2. Discrepancy Reports
 2.1 No failures (i.e., CRs with DRs only)
 2.2 Failures
 2.2.1 Pre-release failures
 2.2.2 Post-release failures
 2.2.3 Exclusive OR of 2.2.1 and 2.2.2 (i.e., CRs
with failures)

4.1 Categorical Data Analysis

 Using the null hypothesis, Ho: A risk factor is not a
discriminator of reliability and maintainability versus the
alternate hypothesis H1: A risk factor is a discriminator of
reliability and maintainability, we used categorical data
analysis to test the hypothesis. A similar hypothesis was
used to assess whether risk factors can serve as
discriminators of metrics characteristics. We used the
requirements, requirements risk factors, reliability, and
metrics data we have from the Space Shuttle “Three
Engine Out” software (abort sequence invoked when three
engines are lost) to test our hypotheses. Samples of these
data are shown below.

- Pre-release and post release failure data from the Space
Shuttle from 1983 to the present. An example of post-
release failure data is shown in Table 2.

Table 2
Failure Found On

 Operational Increment
Days from Release

When Failure Occurred
Discrepancy

Report #
Severity Failure Date Release Date Module in

Error
Q 75 1 2 05-19-97 03-05-97 10

 Risk factors for the Space Shuttle Three Engine Out Auto
Contingency software. This software was released to

NASA by the developer on 10/18/95. An example of a
partial set of risk factor data is shown in Table 3.

Table 3

Change
Request
Number

SLOC
Changed

Complexity
Rating of
Change

Criticality
of Change

Number of
Principal

Functions
Affected

Number of
Modifications

Of Change
Request

Number of
Requirements

Issues

Number of
Inspections

Required

Manpower
Required to

Make
Change

A 1933 4 3 27 7 238 12 209.3 MW

- Metrics data for 1400 Space Shuttle modules, each with
26 metrics. An example of a partial set of metric data is
shown in Table 4.

Table 4

Module Operator
Count

Operand
Count

Statement
Count

Path Count Cycle
Count

Discrepancy
Report Count

Change Request
Count

10 3895 1957 606 998 4 14 16

 Table 5 shows the definition of the Change Request
samples that were used in the analysis. Sample sizes are
small due to the high reliability of the Space Shuttle.
However, sample size is one of the parameters accounted
for in the statistical tests that produced significant results
in certain cases (see Results section).

Table 5: Definition of Samples

Sample Size

Total CRs 24
CRs with no DRs 12
CRs with DRs only 9
CRs with failures 7
CRs with modules that caused
failures

6

CRs can have multiple DRs, failures, and modules
that caused failures.
CR: Change Request. DR: Discrepancy Report.

To minimize the confounding effects of a large

number of variables that interact in some cases, a
statistical categorical data analysis was performed
incrementally. We used only one category of risk factor at
a time to observe the effect of adding an additional risk
factor on the ability to correctly classify change requests
that have discrepancy reports (i.e., a report that documents
deviations between specified and observed software

behavior) or failures and those that do not. The Mann-
Whitney test for difference in medians between categories
was used because no assumption need be made about
statistical distribution; in addition, some risk factors are
ordinal scale quantities (e.g., modification level).
Furthermore, because some risk factors are ordinal scale
quantities, rank correlation was used to check for risk
factor dependencies.

5. Risk Factors

One of the software maintenance problems of the
NASA Space Shuttle Flight Software organization is to
evaluate the risk of implementing requirements changes.
These changes can affect the reliability and
maintainability of the software. To assess the risk of
change, the software development contractor uses a
number of risk factors, which are described below. The
risk factors were identified by agreement between NASA
and the development contractor based on assumptions
about the risk involved in making changes to the software.
This formal process is called a risk assessment. No
requirements change is approved by the change control
board without an accompanying risk assessment. During
risk assessment, the development contractor will attempt
to answer such questions as: “Is this change highly
complex relative to other software changes that have been
made on the Space Shuttle?” If this were the case, a high-
risk value would be assigned for the complexity criterion.
To date this qualitative risk assessment has proven useful
for identifying possible risky requirements changes or,

conversely, providing assurance that there are no
unacceptable risks in making a change. However, there
has been no quantitative evaluation to determine whether,
for example, high risk factor software was really less
reliable and maintainable than low risk factor software. In
addition, there is no model for predicting the reliability
and maintainability of the software, if the change is
implemented. Our research addressed both of these issues.

We had considered using requirements attributes like

completeness, consistency, correctness, etc. as risk factors
[3]. While these are useful generic concepts, they are
difficult to quantify. Although some of the following risk
factors also have qualitative values assigned, there are a
number of quantitative risk factors, and many of the risk
factors deal with the execution behavior of the software
(i.e., reliability), which is our research interest.

5. 1 Space Shuttle Flight Software Requirements
Change Risk Factors

The following are the definitions of the nineteen risk
factors, where we have placed the risk factors into
categories and have provided our interpretation of the
question the risk factor is designed to answer. If the
answer to a yes/no question is "yes", it means this is a
high-risk change with respect to the given risk factor. If
the answer to a question that requires an estimate is an
anomalous value, it means this is a high-risk change with
respect to the given risk factor.

 For each risk factor, it is indicated whether there is a
statistically significant relationship between it and
reliability and maintainability for the software version
analyzed. The details of the findings are shown in the
Results section. In many instances, there was insufficient
data to do the analysis because in these cases the risk
factor evaluation forms were incomplete. These cases are
indicated below. The names of the risk factors used in the
analysis are given in quotation marks.

Complexity Factors
o Qualitative assessment of complexity of change (e.g.,
very complex); “complexity”. Not significant.
- Is this change highly complex relative to other software
changes that have been made on the Space Shuttle?

o Number of modifications or iterations on the proposed
change; “mods”. Significant.
- How many times must the change be modified or
presented to the Change Control Board (CCB) before it is
approved?

Size Factors
 o Number of lines of code affected by the change; “sloc”.
Significant.
- How many lines of code must be changed to implement
the change request?

o Number of modules changed; “mod chg”. Not
significant.
 - Is the number of changes to modules excessive?

Criticality of Change Factors
 o Criticality of function added or changed by the change
request; “crit func” (insufficient data)
- Is the added or changed functionality critical to mission
success?

o Whether the software change is on a nominal or
off-nominal program path (i.e., exception condition);
“off nom path”. (insufficient data)
- Will a change to an off-nominal program path affect the
reliability of the software?

Locality of Change Factors
o The area of the program affected (i.e., critical area such
as code for a mission abort sequence); “critic area”
(insufficient data)
- Will the change affect an area of the code that is critical
to mission success?

o Recent changes to the code in the area affected by the
requirements change; “recent chgs” (insufficient data)
- Will successive changes to the code in one area lead to
non-maintainable code?

o New or existing code that is affected; “new\exist code”
(insufficient data)
- Will a change to new code (i.e., a change on top of a
change) lead to non-maintainable code?

o Number of system or hardware failures that would
have to occur before the code that implements the
requirement would be exe cuted; “fails ex code”
(insufficient data)
- Will the change be on a path where only a small number
of system or hardware failures would have to occur before
the changed code is executed ?

Requirements Issues and Functions Factors
o Number and types of other requirements affected by
the given requirement change (requirements issues);
“other chgs” (insufficient data)
- Are there other requirements that are going to be
affected by this change? If so, these requirements will
have to be resolved before implementing the given
requirement.

o Number of possible conflicts among requirements
(requirements issues); “issues” Significant.
- Will this change conflict with other requirements
changes (e.g., lead to conflicting operational scenarios)

o Number of principal software functions affected by
the change; “prin funcs” Not significant.
- How many major software functions will have to be
changed to make the given change?

Performance Factors

o Amount of memory space required to implement the
change; “space” Significant.
- Will the change use memory to the extent that other
functions will not have sufficient memory to operate
effectively?

o Effect on CPU performance; “cpu” (insufficient data)
- Will the change use CPU cycles to the extent that other
functions will not have sufficient CPU capacity to operate
effectively?

Personnel Resources Factors
o Number of inspections required to approve the
change; “inspects” Not significant.
 - Will the number of requirements inspections lead to
excessive use of personnel resources?

o Manpower required to implement the change;
“manpower” Not significant.
- Will the manpower required to implement the software
change be significant?

o Manpower required to verify and validate the
correctness of the change; “cost” Not significant.
- Will the manpower required to verify and validate the
software change be significant?

o Number of tests required to verify and validate the
correctness of the change; “tests” Not significant.
- Will the number of tests required to verify and validate
the software change be significant?

6. Results

This section contains the results of performing the
following statistical analyses shown in Tables 6. 7, and 8,
respectively. Only those risk factors where there was
sufficient data and the results were statistically
significant, as indicated in the Risk Factors section, are
shown. Some quantitative risk factors (e.g., size of
change) are statistically significant; no non-quantitative
risk factors (e.g., complexity) are significant.

a. Categorical data analysis on the relationship between
CRs with no DRs vs. CRs with failures, using the Mann-
Whitney Test; and categorical data analysis on the
relationship between CRs with no DRs vs. CRs with DRs
only, using the Mann-Whitney Test

b. Dependency check on risk factors, using rank
correlation coefficients; and

c. Identification of modules that caused failures as a result
of the CR, and their metric values.

6. 1Categorical Data Analysis
Of the original nineteen risk factors, only four

survived as being statistically significant (alpha ≤ .05);
seven were not significant; and eight had insufficient data
to make the analysis (see the Risk Factors section). As
Table 6 shows, there are statistically significant results for
CRs with no DRs vs. CRs with failures for the risk factors
“mods”, “sloc”, “issues”, and “space”. There are also
statistically significant results for CRs with no DRs vs.
CRs with DRs only for the risk factors “issues” and
“space”. Since the value of alpha represents the accuracy
of a risk factor in predicting reliability, we use it in Table
6 as a means to prioritize the use of risk factors, with low
values meaning high priority. The priority order is:
“space”, “issues”, “mods”, and “sloc”.

The significant risk factors would be used to predict

reliability and maintainability problems for this set of data
and this version of the software. Whether these results
would hold for future versions of the software would be
determined in validation tests in future research. The
finding regarding “mods” does confirm the software
developer’s view that this is an important risk factor. This
is the case because if there are many iterations of the
change request, it implies that it is complex and difficult
to understand. Therefore, the change is likely to lead to
reliability and maintainability problems. It is not
surprising that the size of the change “sloc” is significant
because our previous studies of Space Shuttle metrics
have shown it to be important [18]. Conflicting
requirements “issues” could result in reliability and
maintainability problems when the change is
implemented. The on-board computer memory required to
implement the change “space” is critical to reliability
because unlike commercial systems, the Space Shuttle
does not have the luxury of large physical memory,
virtual memory, and disk memory to hold its programs
and data. Any increased requirement on its small memory
to implement a change comes at the price of demands
from competing functions.

Table 6: Statis tically Significant Results (alpha ≤ .05). CRs with no DRs vs.
CRs. with failures. Mann-Whitney Test

Risk Factor

Alpha Median Value
CRs with no DRs

Median Value

CRs with failures

mods .0168 .50 4

sloc .0185 10 100

issues .0038 2 16

space .0036 4 231.5

CRs with no DRs vs. CRs with DRs only.

Risk Factor

Alpha Median Value

CRs with no DRs
Median Value
CRs with DRs

only
issues .0386 2 14

space .0318 4 111.50

mods: Number of modifications of the proposed change.
sloc: Number of lines of code affected by the change.
issues: Number of possible conflicts among requirements.
space: Amount of memory space required to implement the change (full words).

In addition to identifying predictive risk factors, we

must also identify thresholds for predicting when the
number of failures would become excessive (i.e., rise
rapidly with the risk factor). An example is shown in
Figure 1 where cumulative failures is plotted against
cumulative issues. The figure shows that when issues
reach 272, failures reach 3 (obtained by querying the data
point) and climb rapidly thereafter. Thus, an issues count
of 272 would be the best estimate of the threshold to use
in controlling the quality of the next version of the
software. This process would be repeated across versions
with the threshold being updated as more data is gathered.
Thresholds would be identified for each risk factor in
Table 6. This would provide multiple alerts for the quality
of the software going bad (i.e., the reliability and
maintainability of the software would degrade as the
number of alerts increases).

6.2 Dependency Check on Risk Factors

 In order to check for possible dependencies among risk
factors that could confound the results, rank correlation
coefficients were computed in Table 7. Using an arbitrary
threshold of .7, the results indicate significant
dependencies between “issues” and “mod” and between
“issues” and “sloc” for CRs with no DRs. That is, as the
number of conflicting requirements increases, the number
of modifications and size of the change request increases.
In addition, there is a significant dependency between
“space” and “issues” for CRs with failures. That is, as the
number of conflicting requirements increases, the memory
space required to implement the change request increases.

Table 7: Rank Correlation Coefficients of Risk Factors
 CRs with no DRs

 mods sloc issues space
mods .230 .791 .401
sloc .230 .708 .317

issues .791 .708 .195
space .401 .317 .195

Table 7 (continued) CRs with failures
 mods sloc issues space

mods .543 -.150 .378
sloc .543 .286 .452

issues -.150 .286 .886
space .378 .452 .886

6.3 Identification of Modules that Caused
Failures

 Requirements change requests may occur on modules
with metric values that exceed the critical values. In these
cases, there is significant risk in making the change
because such modules could fail. Table 8 shows modules
that caused failures, as the result of the CRs, had metric
values that far exceed the critical values. The latter were
computed in previous research [18]. A critical value is a
discriminant that distinguishes high quality from low
quality software. A module with metric values exceeding

the critical values is predicted to cause failures. Although
the sample sizes are small, due to the high reliability of
the Space Shuttle, the results consistently show that
modules with excessive size and complexity lead to
failures. Not only will the reliability be low but this
software will also be difficult to maintain. The application
of this information is that there is a high degree of risk
when changes are made to software that has the metric
characteristics shown in the table. Thus, these
characteristics should be considered when making the risk
analysis.

Table 8: Selected Risk Factor Module Characteristics
Change
Request

Module Metric Metric Critical
Value Metric Value

A 1 change history line count in
module listing

63 558

A 2 non-commented lines of code
count

29 408

B 3 executable statement count 27 419
C 4 unique operand count 45 83
D 5 unique operator count 9 33
E 6 node count (in control graph) 17 66

All of the above metrics exceeded the critical values for all of the above Change Requests.

7. Conclusions

Risk factors that are statistically significant can be

used to make decisions about the risk of making changes.
These changes impact the reliability and maintainability
of the software. Risk factors that are not statistically
significant should not be used; they do not provide useful
information for decision-making and cost money and time
to collect and process. The amount of memory space
required to implement the change (“space”), the number
of requirements issues (“issues”), the number of
modifications (“mods”), and the size of the change
(“sloc”), were found to be significant, in that priority
order. In view of the dependencies among these risk
factors, “space” would be the choice if the using
organization could only afford a single risk factor. We
also showed how risk factor thresholds are determined for
controlling the quality of the next version of the software.

Statistically significant results were found for CRs

with no DRs vs. CRs with failures; in addition, statistically
significant results were found for CRs with no DRs vs.
CRs with DRs only.

Metric characteristics of modules should be

considered when making the risk analysis because metric
values that exceed the critical values are likely to result in
unreliable and non-maintainable software.

Our methodology can be generalized to other risk
assessment domains, but the specific risk factors, their
numerical values, and statistical results may vary. Future
research will involve applying the methodology to the
next version of the Space Shuttle software and identifying
the statistically significant risk factors and thresholds to
see whether they match the ones identified in this
research.

References

1] Barry W. Boehm, "Software Risk Management: Principles
and Practices", IEEE Software, Vol. 8, No. 1, January 1991, pp.
32-41.

[2] Lionel C. Briand, Victor R. Basili, and Yong-Mi Kim,
"Change Analysis Process to Characterize Software
Maintenance Projects", Proceedings of the International
Conference on Software Maintenance, Victoria, British
Columbia, Canada, September 19-23, 1994, pp. 38-49.

[3] Alan Davis, Software Requirements: Analysis and
Specifications, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[4] Joseph R. Fragola, “Space Shuttle Program Risk
Management”, Proceedings Annual Reliability and
Maintainability Symposium, 1996, pp. 133-142.

[5] Taghi M. Khoshgoftaar and Edward B. Allen, "Predicting the
Order of Fault-Fault-Prone Modules in Legacy Software",
Proceedings of the Ninth International Symposium on Software
Reliability Engineering, November 4-7, 1998, Paderborn,
Germany, pp. 344-353.

[6] Taghi M. Khoshgoftaar, Edward B. Allen, Robert
Halstead, and Gary P. Trio, "Detection of Fault-Prone
Software Modules During a Spiral Life Cycle",
Proceedings of the International Conference on Software
Maintenance, November 4-8, 1996, Monterey, California, pp.
69-76.

[7] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai
Kalaichelvan, and Nishith Goel, "Early Quality Prediction: A
Case Study in Telecommunications", IEEE Software, Vol. 13,
No. 1, January 1996, pp. 65-71.

[8] D. Lanning and T. Khoshgoftaar, "The Impact of Software
Enhancement on Software Reliability", IEEE Transactions on
Reliability, Vol. 44, No. 4, December 1995, pp. 677-682.

[9] Gaspare Maggio, “Space Shuttle Probabilistic Risk
Assessment Methodology and Application”, Proceedings
Annual Reliability and Maintainability Symposium, 1996, pp.
121-132.

[10] Sebastian G. Elbaum and John C. Munson, "Getting a
Handle on the Fault Injection Process: Validation of
Measurement Tools", Proceedings of the Fifth International
Software Metrics Symposium, November 20-21, 1998,
Bethesda, Maryland, pp. 133-141.

[11] John C. Munson and Darrell S. Werries, "Measuring
Software Evolution", Proceedings of the Third International
Software Metrics Symposium, March 25-26, 1996, Berlin,
Germany, pp. 41-51.

[12] Allen P. Nikora, Norman F. Schneidewind, and John C.
Munson, IV&V Issues in Achieving High Reliability and Safety
in Critical Control Software, Final Report, Jet Propulsion
Laboratory, National Aeronautics and Space Administration,
Pasadena, California, January 19, 1998.

[13] Magnus C. Ohlsson and Claes Wohlin, "Identification of
Green, Yellow, and Red Legacy Components", Proceedings of
the International Conference on Software Maintenance,
November 16-20, 1998, Bethesda, Maryland, pp. 6-15.

[14] Niclas Ohlsson and Hans Alberg, "Predicting Fault-Prone
Software Modules in Telephone Switches", IEEE Transactions
on Software Engineering, Vol. 22, No. 12, December 1996, pp.
886-894.

[15] Troy Pearse and Paul Oman, "Maintainability
Measurements on Industrial Source Code Maintenance
Activities", Proceedings of the International Conference on
Software Maintenance, Opio (Nice), France, October 17-20,
1995, pp. 295-303.

[16] Shari Lawrence Pfleeger, “Assessing Project Risk”,
Software Tech News, Dod Data Analysis Center for Software,
vol.2, no. 2, pp. 5-8.

[17] Thomas M. Pigoski and Lauren E. Nelson, "Software
Maintenance Metrics: A Case Study", Proceedings of the
International Conference on Software Maintenance, Victoria,
British Columbia, Canada, September 19-23, 1994, pp. 392-401.

[18] Norman F. Schneidewind, "Software quality control and
prediction model for maintenance", Annals of Software
Engineering, Baltzer Science Publishers, Volume 9 (2000), May
2000, pp. 79-101.

[19] Harry Sneed, "Modelling the Maintenance Process at
Zurich Life Insurance", Proceedings of the International
Conference on Software Maintenance, Monterey, California,
November 4-8, 1996, pp. 217-226.

[20] George E. Stark, "Measurements for Managing Software
Maintenance", Proceedings of the International Conference on
Software Maintenance, Monterey, California, November 4-8,
1996, pp. 152-161.

[21] Webster's New Universal Unabridged Dictionary, Second
Edition, Simon and Shuster, New York, 1979.

Figure 1 : Fa i lures vs . I s sues

0

1

2

3

4

5

6

7

8

9

1 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

Cumulat ive I s sues

C
um

ul
at

iv
e

F
ai

lu
re

s

